In-country development and evaluation of new molecular and serological methods for Zika diagnosis and surveillance and their applications

Eva Harris, PhD
Professor, Division of Infectious Diseases and Vaccinology
Director, Center for Global Public Health
School of Public Health
University of California, Berkeley
Sustainable Sciences Institute, San Francisco & Nicaragua
Presentation overview

- Epidemiology of arboviruses in Nicaragua
- Study design
- Methods: 2 rRT-PCR, 4 serological assays
- Evaluation: ZIKV+ and DENV+ cases
- Applications
 - CZS/PRNT study, Salvador, Brazil
 - Index cluster study, Managua, Nicaragua
 - Cohort and seroprevalence studies, Nicaragua
Arboviral Dx & surveillance assays in Nicaragua

• Dengue
 – DENV1-4 RT-PCR, realtime RT-PCR
 – IgM MAC-ELISA (in-house) – decentralized nationally
 – Inhibition ELISA
 – NS1 ELISA

• Chikungunya
 – RT-PCR, rRT-PCR: CHIK-pan-DENV; ZCD
 – 2 IgM ELISAs: MAb and polyclonal – decentralized nationally
 – 2 Inhibition ELISAs: MAb and polyclonal – age-stratified seroprevalence, national seroprevalence

• Zika
 – rRT-PCR: ZCD, Trioplex, ZIKV monoplex + pan-DENV-CHIKV
 – IgM MAC-ELISA – for national decentralization
 – NS1 BOB ELISA
 – Inhibition ELISA

• Mayaro
 – rRT-PCR
DENV, CHIKV, and ZIKV circulation in the Nicaraguan cohort study, 2004-present
DENV, CHIKV, and ZIKV circulation in the Nicaraguan cohort study, 2004-present
DENV, CHIKV, and ZIKV circulation in the Nicaraguan cohort study, 2004-present
The Pediatric Dengue Cohort Study (3,500 children 2-14 y/o) (Dengue 2004-2020; Chikungunya 2014+; Zika 2016+)

- Yearly Healthy Samples
- Acute Sample
- Convalescent Sample
- Year 1
- DOS
- Year 2
- Year 3
- Year 4

The Hospital-based Study (Dengue 1998/2005-2022; Chikungunya 2014+, Zika 2016+)

- Acute Samples
- Convalescent Sample
- Longitudinal Samples
- DOS
- 2 wks
- 3 months
- 6 months
- 12 months
- 18 months

Enrolled at presentation to National Pediatric Reference Hospital
Monthly cases of dengue, chikungunya and Zika in cohort, Aug 2014-Sep 2016
Numbers of paired samples by group

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DENV1 (12 1°, 12 2°)</td>
<td>24</td>
</tr>
<tr>
<td>DENV2 (17 1°, 17 2°)</td>
<td>34</td>
</tr>
<tr>
<td>DENV3 (19 1°, 20 2°)</td>
<td>39</td>
</tr>
<tr>
<td>ZIKV-positive, DENV-immune</td>
<td>65</td>
</tr>
<tr>
<td>ZIKV-positive, DENV-naïve</td>
<td>65</td>
</tr>
<tr>
<td>ZIKV-negative, DENV-negative</td>
<td>74</td>
</tr>
<tr>
<td>Total</td>
<td>301</td>
</tr>
</tbody>
</table>
Methods evaluated

<table>
<thead>
<tr>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEI IgM ELISA</td>
<td>296</td>
</tr>
<tr>
<td>CNDR IgM ELISA</td>
<td>298</td>
</tr>
<tr>
<td>Inhibition ELISA</td>
<td>286</td>
</tr>
<tr>
<td>NS1 BOB ELISA</td>
<td>298</td>
</tr>
<tr>
<td>TRIOPLEX serum</td>
<td>273</td>
</tr>
<tr>
<td>ZCD serum</td>
<td>273</td>
</tr>
</tbody>
</table>
CNDR IgM Capture ELISA

ZIKA

TMB substrate

ZIKV MAb ZKA64 conjugated to HRP

ZIKV Mouse brain antigen

Sample

Human anti-IgM

3-4 hours
90 samples/plate

Donated by Dr. Davide Corti
CDC-BEI IgM Capture ELISA

ZIKA

Substrate

Anti-flavivirus Mab conjugated to HRP

Cell culture antigen (VeroE6)

Sample

Human anti-IgM

3 days
23 samples/plate
NS1 Blockade-of binding (BOB) assay

- Nicaragua samples:
 - National surveillance ZIKV RT-PCR-pos
 - Cohort study ZIKV RT-PCR-pos
 - Cohort study DENV RT-PCR-pos
- Samples from FIOCRUZ, Rio de Janeiro, Brazil
- Samples from Italy (returning travelers, etc.)

![Diagram of the NS1 Blockade-of binding (BOB) assay](image)

- Plasma is added to ZIKV NS1 coated wells
- Probe Ab is added without washing
- Binding of the plasma polyclonal antibodies to multiple sites of the coated ZIKV NS1
- Binding of ZKA35 is not blocked
- Wash + STV-AP
- No signal
- Binding of ZKA35 is blocked
- Wash + substrate (pNPP)
- Signal
- Reading with a spectrophotometer

Balmaseda et al. In revision
Inhibition ELISA

Substrate

Conjugated MAb ZKA64

Sample

Mouse brain ZIKV antigen

MAb ZKA64 Anti-ZIKV

Image of ELISA plate with yellow spots.
ZCD rRT-PCR assay

- Single-reaction rRT-PCR assay for:
 - Detection of all DENV serotypes/genotypes
 - Detection and quantitation of CHIKV and all deposited strains of ZIKV (including recent addition for Suriname)
 - Currently in use at Stanford; Managua, Nicaragua; Guayaquil and Quito, Ecuador; and coming soon to Port of Spain, Trinidad, and Colombo, Sri Lanka

Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses

Jesse J. Waggoner, Lionel Gresh, Alisha Mohamed-Hadley, Gabriela Ballesteros, Maria Jose Vargas Davila, Yolanda Tellez, Malaya K. Sahoo, Angel Balmaseda, Eva Harris, Benjamin A. Pinsky

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 22, No. 7, July 2016
Trioplex rRT-PCR assay

Trioplex Real-time RT-PCR Assay

Centers for Disease Control and Prevention

For use under an Emergency Use Authorization only
Presentation overview

• Epidemiology of arboviruses in Nicaragua
• Study design
• Methods: 2 rRT-PCR, 4 serological assays
• Evaluation: ZIKV+ and DENV+ cases

• Applications
 – CZS/PRNT study, Salvador, Brazil
 – Index cluster study, Managua, Nicaragua
 – Cohort and seroprevalence studies, Nicaragua
Zika Household Transmission Index Cluster Study

~7 contacts

day 1, 4, 5, 10, 21

Entomology (d10):
- mosquitoes
- pupal indices

blood saliva urine

- Real-time qRT-PCR
- Serology (d1-21)

Cohort study
Index Cluster Study of Zika Virus Infection in Managua, Nicaragua

Study Design

Time frame: Aug. 31 to Oct. 21, 2016, tail-end of the epidemic

• Suspected Zika cases from the HCSFV (District II) tested by RT-PCR
• Positives selected as index cases
• Next day, home visit and all present household members are enrolled
• Follow up - 4 time-points: Days 3-4, 6-7, 9-10, and 21
• Clinical data collected by study personnel on all household members

• 33 Index cases/Households
• 109 Contacts
Sample Collection Plan

Table 1. Sample collection plan for index cases (n=33).

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Visit 0 Enrollment(^1)</th>
<th>Visit 1 Day 1(^2)</th>
<th>Visit 2 Days 3/4</th>
<th>Visit 3 Days 6/7</th>
<th>Visit 4 Days 9/10</th>
<th>Visit 5 Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Urine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Saliva</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^1\)Enrollment day for index cases: 28 from the PDCS and 5 from national surveillance (n=33). Surveillance cases only have blood and no urine or saliva samples at Visit 0.

Table 2. Sample collection plan for contacts (n=109).

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Visit 1 Day 1(^2)</th>
<th>Visit 2 Days 3/4</th>
<th>Visit 3 Days 6/7</th>
<th>Visit 4 Days 9/10</th>
<th>Visit 5 Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Urine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Saliva</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^1\)Enrollment day for contacts.
Zika CNDR IgM ELISA consistently detected RT-PCR-positive cases

- Detected **100%** of the PCR positive Index Cases.
 *One of the 33 index cases missing convalescent sample - no serology was performed.

- Detected **90%** of the PCR positive Contacts.
 *One of the 11 ZIKV RT-PCR positive missing convalescent sample - no serology was performed.

- 25 contacts were IgM positive but RT-PCR negative. Likely recent not current ZIKV infections.
Cohort study: sero-incidence and effect of prior DENV infection

- Paired annual samples: 2016-2017 (March-April); age-stratified seroprevalence study (n=1400)
 - DENV Inhibition ELISA
 - CHIKV Inhibition ELISA
 - ZIKV Inhibition ELISA
 - NS1 BOB ELISA

- Calculation of the Symptomatic to Inapparent (S:I) ZIKV infection ratio when combined with rates of symptomatic illnesses recorded during transmission season

- Estimation of the force of infection and R_o of ZIKV
Cohort study: sero-incidence and effect of prior DENV infection

• Effect of prior DENV exposure on ZIKV infection and disease incidence, S:I ratio, and disease severity:
 • documented prior DENV exposure in the cohort
 • number of DENV infections
 • pre-existing cross-reactive anti-ZIKV antibody titers
 • pre-existing cross-reactive anti-DENV antibody titers

• Evaluation of potential immune correlates of protection against and risk of ZIKV infection and disease
Conclusions

- Development and/or evaluation of 2 molecular and 4 serological assays in a Zika- and dengue-endemic country
- Promising new serological assays for sensitive and specific diagnosis of Zika cases (IgM MAC-ELISA)
- Promising new serological assays for sensitive and specific Zika surveillance (NS1 BOB ELISA)
- Perform well in numerous distinct applications
- Enable seroprevalence studies and analysis of the effect of pre-existing antibodies from prior DENV infection(s)
Acknowledgments

Centro de Salud
Socrates Flores Vivas
Guillermina Kuan
Miguel Reyes
Leyla Saenz
Nery Sanchez
Sergio Ojeda
Zoila Orozco
Carolina Flores
Heyri Roa

Hospital La Mascota
Federico Narvaez
Cintia Saborio
Julia Medina

SSI/ICS ZIP
Anna Gajewski
Elsa Videa
Lilliam Llufrio
Ennio Saenz

Ministerio de Salud
Sonia Castro

SILAIS Managua
Maritza Cuan

Dir. de Epidemiología
Carlos Saenz

CNDR
Martha Delgado

UC Berkeley
Josefina Coloma

University of Michigan
Aubreee Gordon

Departamento de Virología, CNDR
Angel Balmaseda
Andrea Nuñez
Douglas Elizondo
Yolanda Tellez
Yara Saboria
Magelda Montoya
Leonel Pérez
Juan Carlos Mercado
Roger Lopez
Berman Moraga
Maria José Vargas
Sonia Arguello

Sustainable Sciences Institute (SSI/ICS)
Lionel Gresh
William Aviles
Raquel Burger-Calderon
Anna Gajewski
Jesse Zimmerman
UCB Pathogenesis & Molecular Virology Group
Chunling Wang
Edwina Tran
Henry Puerta Guardo
Dustin Glasner
Jeffrey Shu
Milena Dimitrova
Carmel Malvar
Taylor Barca
Trent Gomberg

UCB Immunology Group
Robert Beatty
Magelda Montoya
Josefina Coloma
Diego Espinosa
Daniela Valente
Daniela Michlmayr
Paulina Andrade
Leah Katzelnick
Aryan Haratian
Kalani Ratnasiri
Perri Callaway
Sam Schildhauer

Collaborators:
J. Waggoner (Emory), B. Pinsky (Stanford)
A. de Silva, M. Collins (UNC)
D. Corti, K. Stettler, S. Jaconi (Humabs)
A. Bispo, D. Brown, R. Medialdea (FIOCRUZ)
F. Baldanti, E. Percivalle (Pavia); L. Barzon
Gracias!

Funding: NIAID/NIH P01, HIPC, R01, CETR; BMGF/ICSS